THE EFFECT OF OXYGEN DEFICIENCY ON THE DEVELOPMENT EXPERIMENTAL ATHEROSCLEROSIS OF THE CORONARY ARTERIES

N. N. Kipshidze

From the Institue of Therapy (Director – Active Member AMN SSSR, A. L. Myasnikov) of the AMN SSSR, Moscow

(Received June 12, 1958. Presented by Active Member Acad. Med. Sci. USSR, A. L. Myasnikov)

The role of oxygen deficiency in the development of atherosclerosis and cardiosclerosis has received inadequate attention from the point of view of experimental research.

In experiments on rabbits, R. L. Al'tshul' found that administration of cholesterol to animals kept in chambers with an increased oxygen content (up to 60-65%) greatly inhibits the development of atherosclerosis. In this author's opinion an increased supply of oxygen stimulates oxidation of cholesterol, and the oxycholesterol is either excreted from the body more readily or, passing with the bile into the intestine, does not undergo reabsorption as in the case of cholesterol.

The aim of the present research was to study the effect of prolonged oxygen deficiency on the degree and character of the atherosclerotic changes occurring in the coronary vessels during experimental cholesterol atherosclerosis.

EXPERIMENTAL METHOD

Experiments were carried out on 27 rabbits of the same sex, weighing 2000-2400 g, and kept under identical conditions on a standard diet.

The animals were subdivided into three groups.

The first group (10 rabbits) acted as controls, and received cholesterol (300 mg/kg body weight) dissolved in vegetable oil, daily for 6 months.

The second group, like the first, received cholesterol in the same daily dosage, but at the end of the second month, in addition to feeding on cholesterol, the animals were kept each day for 3-6 hours in a chamber with a lowered oxygen concentration. The oxygen content of the chamber, whose volume was 250 cm³, was brought down to 12% (by addition of nitrogen to the outside air). Air and nitrogen entered the chamber simultaneously and were mixed by an electric fan. Entry of the air and nitrogen was controlled by means of a kerosene rheometer. The concentration of oxygen and carbon dioxide in the chamber was determined by means of a Haldane apparatus.

The third group (5 rabbits) received no cholesterol, but at the end of the second month, like the rabbits of the second group, they were placed for 3-6 hours every day for 4 months in the chamber with the lowered oxygen concentration.

Every 15 days, before the rabbits were placed in the chamber and immediately after exposure to the low oxygen concentration for 3-6 hours, the blood cholesterol of all the animals was estimated by Grigaud's method.

The Blood Cholesterol Concentration of the Rabbits of the First Control Group Receiving Cholesterol Alone TABLE 1

rosis	of the	coronary arteries	++	+	++	++	+	++	+++	++	++	+)	
Degree of atherosclerosis		or the aorta	++++	+++	+++	+++	++	+++	++++	+++	+++	++	
ncentration (in mg %)		180th	770	610	780	470	330	292	810	576	089	308	549,6
		165th	700	089	710	580	360	650	840	919	630	320	608,6
		150th	812	750	068	536	322	009	870	670	550	340	630
	ment	135th	006	822	912	516	412	518	1050	720	580	376	9,029
	experi	105th 120th 135th	846	160	840	450	382	770	1160	876	740	400	841,6 721,8
	of the	105th	1070	930	1140	420	550	800	1280	920	820	456	841,6
	day	90th	940	830	1060	512	476	780	1.180	820	890	542	806
		75th	814	780	880	450	280	810	928	740	710	448	714
		60th	642	620	730	400	200	742	864	650	542	386	9,709
		45th	482	530	522	336	420	510	622	540	410	300	466,2
		30th	326	474	370	286	320	322	440	412	356	260	357,6
		15th	260	320	280	212	228	262	312	346	210	180	264
	Paforo	experi- ment	84	92	58	42	56	85	89	72	88	64	02
Weight	at the end	of the ex- experiment periment	3100	3500	2500	2800	2600	3200	3500	3300	2800	3000	90
Wei	hofore		2300	2200	2300	2100	2200	2100	2300	2000	2200	2000	Average
	Rabbit	°ON	95	96	26	86	66	102	103	104	105	106	

The Blood Cholesterol Concentration of the Rabbits of the Second Group, Receiving Cholesterol and Kept in a Chamber with a Low Oxygen Concentration TABLE 2

f erosis	0.5 ph.	coronary arteries	++++	+++	+++	+++	-}-	++	+++	+++	+++	:	
Degree of atherosclerosis	Degree catherosci		++++	++++	++++	++++	+	+++	++++	++++	++++		
		180th	1558	1350	1146	986	462	844	1060	1280	1312	1500	1149,8
		165th	1580	1490	1220	850	570	924	1176	1320	1400	1430	1196
		150th	1610	1670	1440	784	462	916	1250	1260	1540	1470	1240,2
mg %)	ent	135th	1756	1588	1350	920	620	096	1084	1210	1500	1520	1251
ion (in	of the experiment	120th	1680	1534	1390	854	260	066	940	1278	1324	1600	1215
centrat	the ex	105th	1560	1618	1150	970	642	872	1018	1260	1210	1780	1208
rol con	day o	90th	1420	1530	946	884	684	810	1160	1380	1000	1450	1126,4
Blood cholesterol concentration (in mg %)		75th	1110	1150	700	770	562	760	860	1026	942	1310	919,0
lood cl		60th	856	780	534	580	380	458	550	744	618	826	682,6
		45th	772	099	448	400	430	380	484	550	526	622	527,2
		30rh	009	428	362	326	412	390	548	310	380	486	429,6
		15th	328	344	270	242	226	300	410	196	230	310	285,6
	before	experi- ment	76	94	82	89	92	28	48	96	99	74	73,8
Weight	at the end	of the ex-experi	3100	3200	2900	3250	3300	3500	3600	3100	3450	3200	
Wei	before		2200	2000	2100	2200	2200	2000	2300	2200	2100	2000	Average.
	Rabbit	No.	89	69	78	79	84	98	88	101	113	118	

At the end of the sixth month all the animals were killed by air embolism and their aorta and heart were examined. The aorta was stained by Sudan III in toto, and serial sections of the heart were cut and stained by the usual methods.

The degree and character of the atherosclerosis of the aorta and coronary arteries of the heart were studied. The degree of atherosclerosis was designated conventionally by corsses: + alight changes; ++ moderate; +++ se - vere; ++++ most pronounced.

TABLE 3

The Blood Cholesterol Concentration of the Rabbits of the Third Group (Not Receiving Cholesterol), Kept in a Chamber with a Low Oxygen Concentration

Rabbit No.	7.7	Blood cholesterol concentration (in mg%)										
	We		day of the experiment									
	Before ex- periment	At the end of the ex- periment	Before experi- ment	15th	30th	45th	60th	75th	90th	105th	120th	
183	2200	29 00	82	9 8	74	102	96	86	88	100	96	
184	2300	3000	76	88	96	90	94	78	96	92	88	
186	2000	2800	54	78	92	86	98	94	88	96	76	
187	2200	3000	92	104	96	110	94	108	102	94	100	
201	2200	3200	66	. 84	92	102	86	100	98	100	94	
Averag	ge		74	91	90	98	93	93	94	98	90	

EXPERIMENTAL RESULTS

In the course of the experiment, for reasons unconnected with the experimental conditions, 2 rabbits of the second group died (in the 3rd and 4th months).

On the 15th day after the beginning of cholesterol feeding, the blood cholesterol level in the rabbits of the first, control group rose to 3-5 times its initial value, to reach its maximum in the 3rd-4th month of feeding, after which it gradually fell until the end of the experiment (Table 1).

In the experimental rabbits of the second group, cholesterol feeding plus keeping the animals in the chamber with a low oxygen concentration led to a sharp increase in the blood cholesterol, in individual cases up to 1780 mg%, which was maintained at a high level throughout the whole experiment (Table 2).

Thus, as a result of anoxia, the rise in the cholesterol concentration in the rabbits of the second group was significantly higher than that in the rabbits of the first, control group (see Table 1).

In the rabbits of the third group, which received no cholesterol but which were kept in the chamber with the low oxygen concentration, the blood cholesterol level rose insignificantly (Table 3).

Prolonged anoxia thus led to an increase in the blood cholesterol concentration, which was evidently due to a reduction in the processes of assimilation and synthesis of cholesterol and of the power to excrete it from the body.

In the rabbits of the first, control group the atherosclerotic plaques were situated mainly in the origin and the arch of the aorta, in the form of continuous outgrowths, markedly raised above the surface of the aorta. In the lower segments of the aorta isolated plaques were present, and where these became confluent, they formed separate areas of lipoidosis. The degree of atherosclerosis in the rabbits of the first, control group was assessed in the majority of cases as +++ (see Table 1).

In the rabbits of the second group atherosclerotic plaques were situated throughout the whole length of the aorta, including its abdominal portion. Merging with each other, they formed continuous zones of atherosclerosis, markedly elevated above the surface of the aorta in the form of outgrowths. The degree of atherosclerosis was assessed in the majority of cases as ++++ (see Table 2).

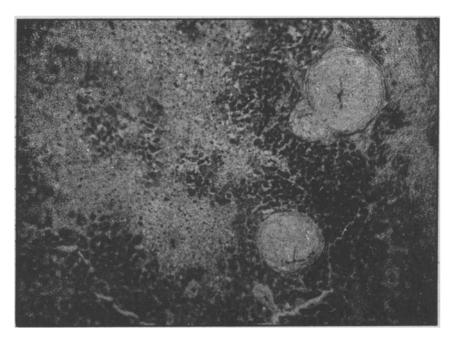


Fig. 1. Large atherosclerotic plaques in the intramuscular branches of the left descending coronary artery. Extensive area of severe destructive changes in the fibers of the myocardium.

Stained by Mallory's method. Objective $6 \times$, ocular $7 \times$. Rabbit No.69, Group – fed on cholesterol and kept in a chamber with a low oxygen concentration (12%). Duration of experiment 6 months.

In the third group no atherosclerotic changes could be found either macroscopically or microscopically.

Examination of the coronary arteries of the rabbits of the first, control group showed in the majority of cases a moderate atherosclerosis (++). Atherosclerotic plaques were situated mainly in the intramuscular branches of the left coronary artery. These atherosclerotic plaques greatly narrowed the lumen of the vessel, in some cases almost completely closing it.

Sometimes the atherosclerotic process mainly affected the subepicardial branches of the left coronary ar - tery, but here they were mainly infiltrative in character; large plaques projecting into the lumen of the vessel were not found. From time to time the branches of the right coronary artery were affected also.

In the second group of rabbits the atherosclerosis of the coronary arteries was severe in the majority of cases (+++, see Table 2). Atherosclerotic plaques were found both in the intramuscular branches of the left coronary artery and in the main subepicardial trunks, projecting considerably into the lumen of the vessel.

In contrast to the control group, in the rabbits of the second group atherosclerosis affected almost all the subepicardial trunks of the left and, to some extent of the right coronary artery too. In the branches of the right coronary artery in the rabbits of the second group atherosclerotic plaques could be found, grossly narrowing the lumen of the vessel. The plaques consisted of large quantities of lipoid deposits, homogeneous or in places granular in structure. In the plaques there were strongly developed elastic fibers, and in places the internal elastic membrane was absent.

In the rabbits of the third group no atherosclerosis was present.

From our findings we concluded that oxygen deficiency in conjunction with cholesterol feeding caused a more pronounced hypercholesteremia and a severer degree of atherosclerosis of the aorta and the coronary arteries of the heart than feeding with cholesterol alone.

Oxygen deficiency evidently causes a disturbance of oxidative processes in the body, which in turn is reflected in the assimilation and synthesis of exogenous cholesterol. Without cholesterol feeding, oxygen deficiency raised the blood cholesterol concentration only insignificantly, and did not cause the development of atherosclerosis.

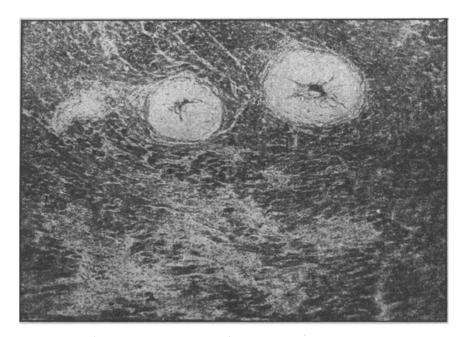


Fig. 2. Atherosclerotic plaques causing gross narrowing of the lumen of the intramuscular branches of the left coronary artery, near which can be seen well marked fibrotic lesions in the muscle of the left ventricle.

Stained by Mallory's stain. Objective 6 x, ocular 7 x. Rabbit No.79, the same as in Fig. 1.

So far as myocardial changes were concerned, in the first, control group the atherosclerosis of the coronary arteries led in the majority of cases to moderate cardiosclerosis. In the heart muscle were observed small connective tissue scars, in places firm, in others friable, and mainly situated close to intramuscular arteries affected by atherosclerosis, with gross narrowing of the lumen. Areas in which fibers of connective tissue had developed were most often found in the anterior and anterolateral walls of the left ventricle.

In the second group, on examination of the heart muscle, extensive focal collections of cells with large number of lipoid inclusions in their protoplasm were discovered in the interstitial tissue of the mycoardium. These collections of cells were most often found in the papillary muscles. In places in the muscle of the left ventricle there was a diffuse lipoid infiltration of whole groups of muscle fibers.

Close to the arteries with atherosclerotic plaques and in other areas of the myocardium were observed gross lesions of a dystrophic or fibrotic character.

The dystrophic lesions consisted of destruction and necrosis of whole areas of muscle fibers. Many muscle fibers were severely vacuolated. The fibrotic lesions in the heart muscle of the rabbits consisted of multiple and extensive reticular scars.

Alongside areas of loose connective tissue were observed extensive, dense connective tissue scars, composed of coarse collagen fibers, staining intensively with picrofuchsin a crimson color. Some muscle fibers were separated by a large quantity of interstitial myocardial tissue, containing many cells. Among the areas of cellular infiltration were seen isolated cells undergoing destruction. The blood vessels were well filled and many capilaries and veins were dilated. The muscle of the ventricles, especially of the right ventricle, was hypertrophied.

The changes observed in the heart muscle of the rabbits of the second group could be regarded as a manifestation of diffuse cardiosclerosis with the formation of extensive areas of necrosis of whole groups of muscle fibers, as in the case of an infarct of the myocardium (Fig. 1). Here could be traced all stages of development of

sclerotic changes in the heart muscle, from areas of recent hemorrhage, destruction and lysis of muscle fibers up to scar tissue formation (Fig. 2).

Evidently in consequence of gross stenosing atherosclerosis of the coronary arteries and the action of anoxia, a severe disturbance of the normal blood supply of the heart muscle took place, with the development of extensive areas of necrosis. The diffuse atherosclerotic cardiosclerosis was severe (+++) in the rabbits of the second group.

In the third group of rabbits slight dilatation of individual capillaries and veins was observed in the heart muscle. In some areas of the left ventricle, close to its cavity, and in the papillary muscles solitary muscles fibers were found in a state of destruction. Small areas of proliferation of histocytes were seen there also. No other abnormalities were found.

SUMMARY

Experiments were performed on rabbits. The author studied the effect of prolonged hypoxia on the development of aortic and coronary atherosclerosis in experimentally induced cholesterol atherosclerosis. Oxygen deficiency was attained by placing the animals daily into a chamber with decreased oxygen content (down to 12%) for 3-6 hours, for 4 months.

It was shown that prolonged hypoxia brings about a high hypercholesteremia and greatly intensifies the development of aortic and coronary atherosclerosis.

Prolonged hypoxia considerable increases stenosing atherosclerosis of the coronary arteries and causes severe dystrophic changes in the cardiac muscle in the form of numerous necroses of certain groups of muscular fibers and also always results in the development of diffuse cardiosclerosis in all cases.